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to a sheared serpentinite 
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Al~'traet--Brittle fault zones are commonly characterized by penetrative fracturing of the rock to form an 
aggregate of blocks, so that the rock becomes, in essence, like a granular material composed of rigid 'grains'. The 
surfaces Of the blocks, or 'grains', have a wide distribution of orientations, and shearing of the blocks past one 
another on these planes accommodates  the large-scale motion, i.e. the maeromotion, in the fault zone. During a 
maeromotion that is a non-coaxial deformation, the rigid blocks and their surfaces may undergo a progressive 
rigid rotation that is distinct from the macromotion and is described by the microspin. If a macroscopic non- 
coaxial deformation has monoclinic symmetry, this symmetry should be reflected in the sense of rigid rotation of 
the blocks and their surfaces. 

On the sudaces of the blocks, which are local shear planes, the history of displacement may be recorded by 
mineral fibers that grow progessively with displacement. Because of the rigid rotation of the local shear planes, 
slickenfiber lineations commonly are curved. The sense of curvature from the youngest to the oldest part of the 
fiber, looking down the normal to the local shear plane, is different for those planes whose normals are on 
opposite sides of the unique monoclinic symmetry plane for the macroscopic shearing. The intersection of the 
symmetry plane with the plane of the fault zone defines the macroscopic slip direction, and the sense of rigid 
rotation of the local shear planes determined from the lineations defines the shear sense. 

Application of this technique to the disrupted and sheared margins of the Feather River Peridotite in the 
northern Sierra Nevada of California indicates that late deformation involved dextral-normal oblique slip along 
the Melones fault zone. 

INTRODUCTION 

IN RECENT years, the development of techniques for 
using microstructures to infer the shear sense in major 
ductile shear zones (e.g. Berth6 et al. 1979, Platt & 
Vissers 1980, Simpson & Sehmid 1983, Lister & Snoke 
1984, Passchier & Simpson 1986) has enabled the in- 
terpretation of tectonic displacements that previously 
were obscure or unknown. The shear sense on brittle 
faults can also be deduced from the characteristics of 
fractures and microfractures associated with the fault 
(Hancock 1985, Petit 1987). In this paper, we present a 
new method that lends itself to simple field application, 
by which the macroscopic shear sense can be deduced 
for a brittle fault zone containing curved slickenfiber 
lineations on multiple local shear surfaces. 

Large-scale fault zones commonly are penetratively 
fractured into an aggregate of blocks wkose surfaces 
have a wide distribution of orientations. The rock is 
essentially a macro-granular material in which the large- 
scale simple shear in the fault zone, referred to as the 
macromotion, is accommodated by the sliding of the 
blocks past one another on their surfaces. The surfaces 
of the blocks thereby become local shear planes. Mar- 
shak et al. (1982) refer to this type of deformation as 
"mesoscopic cataclasis", and it has been recognized in 
numerous instances (see references in Marshak et al. 
1982). We assume that the blocks, and therefore the 
local shear planes that make up their surfaces, also 
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undergo a progressive rigid rotation during the defor- 
mation. The rigid rotation rate of the blocks, which we 
call the microspin, is distinct from the macromotion but 
reflects the macroscopic sense of shear. 

We postulate that the curved slickenfibers result from 
the growth Of fibers during macroscopic faulting and the 
associated local rigid rotation of the blocks and their 
surfaces. The sense of curvature of slickenfibers (clock- 
wise or counterclockwise) about the pole to the local 
shear plane in which they lie, depends on the orientation 
of the local shear plane pole relative to the microspin 
axis. The orientation of the microspin axis in turn 
reflects the monoclinic symmetry of the macroscopic 
shearing in the fault zone. Thus we can use the curvature 
sense of the slickenfibers on surfaces of many different 
orientations to constrain the geometry of the macro- 
scopic deformation. 

Our model is summarized in Fig. 1, where for sim- 
plicity we show a single rigid octahedral block whose 
faces are the local shear planes. For convenience of 
illustration, we show the block with its surfaces arranged 
symmetrically with respect to the symmetry plane for the 
macroscopic simple shear and with respect to the normal 
to the macroscopic fault plane. The history of the dis- 
placement directions of material across the faces of the 
block is indicated by the curved arrows and is recorded 
by slickenlines that may develop on the faces. The 
directions become younger towards the arrowhead. 
When viewed looking down on the local shear plane, the 
sense of slickenline curvature indicated by these arrows 
is different for shear plane poles that lie on opposite 
sides of the symmetry plane for the macroscopic simple 
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shear (cf. arrows on planes that are inclined to the left of 
the symmetry plane with those on planes that are in- 
clined to the right in Fig. 1, remembering to determine 
curvature sense looking down on the plane). 

Thus we can use measurements of the sense of slicken- 
line curvature on local shear planes of widely distributed 
orientations to deduce the orientation of the symmetry 
plane for the macroscopic shear in brittle fault zones. 
Because the intersection of the symmetry plane with the 
plane of faulting defines the slip direction (Fig. 1), and 
the sense of curvature of the slickenlines defines the 
sense of shear (Fig. 1), we can infer both the direction 
and sense of shear in the fault zone. The technique is 
comparable to Hansen's (1971) method for deducing slip 
direction and shear sense from the asymmetry of minor 
folds in ductile shear zones. 

Sheared serpentinites commonly are penetratively 
fractured into distinct blocks whose sheared surfaces are 
covered by mineral fiber lineations (slickenfibers) of 
widely varying orientation. The margins of the Feather 
River Peridotite in the northern Sierra Nevada of Cali- 
fornia provide one example, and we illustrate this tech- 
nique by applying it to the interpretation of late motion 
along the faults bounding the peridotite body (Gefell 
1989. Gefell et al. 1989). 

This analysis is applied in particular to slickensides 
containing slickenfibers, for we are most confident of the 
interpretation of their origin (Durney & Ramsay 1973, 
Ramsay 1980, Ramsay & Huber 1983). In principle, 
however, the same technique should be applicable to 
any set of slickenlines that lengthen progressively during 
a finite deformation. Some slickenlines, such as ridge- 
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Fig. 2. Construction and interpretation of a tangent-lineation diagram. 
Plotting slickenline data on a spherical projection requires combining 
lineation orientation with attitude of plane in which lineation lies. (a) 
Pole to shear plane is plotted, and a line is constructed through the pole 
tangent to the great circle (M plane) containing pole and lineation 
orientation in the shear plane. Directional information associated with 
the lineation, if available, is indicated by arrowhead, which points in 
direction of relative motion of footwall block. Note that both equal- 
angle and equal-area projections distort true trend of lineation. There 
would be no distortion on an orthographic projection. (b) A three- 
dimensional interpretation of the tangent-lineation diagram. Pole to 
shear plane is point at which shear plane would be tangent to the 
outside of plotting hemisphere. Arrow thus can be interpreted as 
lineation orientation lying in tangent shear plane, and it points in the 
direction in which material outside plotting hemisphere moves past 

hemisphere on tangent shear plane. 
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Fig. 1. Geometry of simple shear, microspin and curved stickenlines in 
a fault zone. The velocity distribution indicates macroscopic progress- 
ive simple shear parallel to the fault zone. Slip direction is parallel to 
the intersection line of the symmetry plane for macroscopic motion 
with the fault zone orientation. A rigid octahedral block rotates 
progressively during deformation about the axis of microspin normal 
to the symmetry plane. For convenience of illustration, surfaces of the 
block are symmetrically disposed with respect to the symmetry plane, 
and the block is shown at the instant when its planes are symmetrically 
arranged about the normal to the fault zone. Curved arrows on the 
surfaces suggest expected pattern of shear directions of material across 
them resulting from the history of microspin. Arrows are drawn from 
oldest to youngest directions of shear, and reflect the curvature of 
slickenlines that would form, Only one plane of symmetry exists for 
the slickenline pattern. Principal axes of instantaneous strain rate k~ 
and e3 are parallel to the symmetry plane, and -;2 is normal to it. The 

axis of microspin is parallel to k2. 

and-groove lineations (Means 1987), may not meet this 
criterion, and slickenlines generated during a relatively 
instantaneous (seismic) slip event also may not. 

Complete information about the orientation of slick- 
enlines requires both the orientation of the shear plane 
and the orientation of the lineation. These data are 
conveniently combined in an uncluttered and easily 
interpreted stereonet diagram that we refer to in a 
general sense as a "tangent-lineation diagram' (Fig. 2). 
These diagrams are constructed by plotting the pole to 
each local shear plane, and constructing a line through 
the pole tangent to the great circle (the M plane) that 
connects the pole to the orientation of the lineation in 
the shear plane (Fig. 2a) (this technique is attributed to 
Hoeppener 1955. in Goldstein & Marshak 1988). If 
directional information is available for the lineation, we 
plot an arrowhead on the line through the pole so that it 
indicates the direction of motion of the footwall relative 
to the hanging wall of the shear plane (Fig. 2). 

We can interpret a tangent-lineation diagram easily by 
viewing the shear plane pole as the point where the shear 
plane is tangent to the outside of the plotting hemisphere 
(Fig. 2b). The line or arrow representing the lineation 
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then lies in the tangent plane and is parallel to the actual 
orientation of the lineation on that plane. For slicken- 
lines, the pattern of arrows for multiple shear plane 
orientations (el. Fig. 4) indicates the directions of 
motion of material past the lower plotting hemisphere 
on shear planes tangent to the hemisphere. 

Our arrow convention is the opposite of that used by 
other authors (e.g. Goldstein & Marshak 1988), because 
the intuitive understanding of the resulting diagram 
seems easier. We visualize the plotting hemisphere as a 
stable body imbedded in the deforming medium. The 
arrows then indicate the direction of motion of the 
medium past the hemisphere. Thus a tangent-lineation 
diagram is rather like a streak photograph of particles 
suspended in water flowing past a submerged hemis- 
pherical window. Note, however, that the true trend of a 
tangent lineation is not preserved by either equal-angle 
or equal-area projection; thus the angle between the 
tangent lineation and the north direction on the tangent- 
lineation diagram is in general a distortion of the true 
trend of the lineation. 

Such diagrams are also referred to in a more specific 
sense as 'slip-linear diagrams' (e.g. Goldstein & Mar- 
shak 1988). Tangent-lineation diagrams, however, are 
not restricted to plotting slip lineations, but can be used 
to plot any data for which a lineation and the plane in 
which it lies are both important, such as stretching 
lineations in foliations or fold axes in axial surfaces. 

ANALYSIS OF LINEATIONS FORMED DURING 
PROGRESSIVE SIMPLE SHEAR 

We assume that slickenlines are everywhere parallel 
to the direction of instantaneous displacement across 
each local shear plane. This direction is also necessarily 
the direction of maximum rate of shear on that plane. 
We interpret these directions in terms of the macromo- 
tion in the fault zone by focusing attention on a single 
rigid block from the penetratively fractured rock mass in 
the fault zone, and we imagine that it is surrounded by a 
uniform continuum (Fig. I). The deformation of the 
continuum is the macromotion, which in effect describes 
the averaged motion of the mass centroids of all the 
other blocks making up the rock. We then assume that 
the orientation of the maximum rate of shear of the 
continuum across the faces of the rigid block defines the 
orientation of the slickenlines that develop. 

The macromotion is a deformation defined by the 
macrovelocity gradient tensor, which has a symmetric 
part, the instantaneous strain rate or the deformation 
rate, and an antisymmetric part, the macrospin. The 
direction of maximum rate of shear of the continuum on 
any surface of the rigid block is the maximum tangential 
component of the macrovelocity gradient tensor on that 
surface (Twiss et al. 1989, and in preparation). We 
assume this direction is, on the average, the direction of 
the slickenlines that form during the deformation. 

The microspin defines the rotation rate of the rigid 
block and the local shear planes that make up its surface. 

In principle, the microspin can be an independent com- 
ponent of the motion, and we can therefore choose to 
consider any relationship between the microspin and the 
macrospin. We illustrate the principles for determining 
the shear sense from curved slickenfibers using the 
model of macroscopic progressive simple shear during 
which the microspin equals the macrospin (Willis 1977, 
has made an interesting theoretical and experimental 
study of the rotation rate of rigid blocks of different 
shapes in a fluid undergoing progressive simple shear). 

Figure 3 shows two frames from a macroscopic pro- 
gressive simple shear of a continuum during which a 
macroscopic square in the continuum is sheared into a 
parallelogram, and a macroscopic circle is deformed into 
a finite-strain ellipse. Microspin of a rigid octahedral 
block embedded in the continuum results in a clockwise 
rotation of the block as shown. Several characteristics 
are significant to the development of our interpretation. 

(1) The deformation is non-coaxial, which means that 
the principal axes of finite strain ek rotate with respect to 
those of the incremental strain ek, which themselves are 
parallel to the principal axes of instantaneous strain rate 
~k (Fig. 3). Local shear planes undergo rigid rotation in 
the same sense, along with the rigid block. Because the 
microspin equals the macrospin, the rotation rate of the 
blocks given by the microspin reflects the monoclinic 
symmetry of the macromotion. 

(2) The axis of microspin is parallel to the intermedi- 
ate principal axis of the instantaneous strain rate tensor 
~2 and perpendicular to the plane of monoclinic sym- 
metry for the macromotion (Figs. 1 and 3). 

(3) The intersection of the monoclinic symmetry plane 
with the macroscopic shear plane is the macroscopic slip 
direction. The symmetry plane also contains the maxi- 
mum and minimum instantaneous strain rate axes ~t and 
k3 (Figs. 1 and 3). 

If the microspin is equal to the macrospin, the direc- 
tions of maximum rate of shear on arbitrarily oriented 
local shear planes depend only on the ratio 
D = (e2 - ~3)/(~1 - ~3) (Twiss et at. in preparation). For 
progressive simple shear, ~,, = 0 and el = -e3, giving 
D = 0.5. This value of D actually characterizes all pro- 

~a x. ~3 x3 ~ 

(a) (b) 

Fig. 3. Progressive simple shear, a non-coaxial deformation. Principal 
instantaneous strain rate axes el, e2 and ~3 are constant in orientation. 
and principal axes of finite strain e t. e., and e3 rotate with respect to 
them. A rigid octahedral block (cf. Fig. 1) rotates at a rate given by the 
microspin, whose components equal the macrospin components. Sym- 
metry plane for monoclinic motion is parallel to diagram, and the axis 
of microspin is perpendicular to diagram and parallel to i,.. Curved 
arrows on faces of oetahedral block indicate expected slickenline 
orientations resulting from the motion (cf. Fig. 1). Intersection of 

symmetry plane and plane of faulting is parallel to slip direction. 
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Fig. 4, A tangent-lineation diagram showing instantaneous directions 
of maximum rate of macroscopic shear on a distribution of local shear 
planes for the case of simple shear when microspin equals macrospin 

(lower-hemisphere, equal-angle projection). 

gressive, plane strain, constant volume deformations. 
Values in the range 0 -< D < 0.5 characterize progress- 
ive, constrictional, constant volume deformation; and 
values in the range 0.5 < D -< 1 characterize progressive, 
flattening, constant volume deformation. 

On a tangent-lineation diagram, we plot the directions 
of the instantaneous maximum rate of shear for a set of 
local shear planes that has a uniform distribution of 
orientations. For D = 0.5, the pattern of tangent linea- 
tions has orthorhombic symmetry (Fig. 4) and is the 
same as the pattern for the directions of maximum 
resolved shear stress. 

A finite increment of deformation, however, includes 
a finite rigid rotation of the local shear planes because of 
the microspin. The rotation occurs about the unique 
microspin axis, which is parallel to e2 (Fig. 1). As a local 
shear plane undergoes a progressive rigid rotation dur- 
ing progressive macroscopic simple shear, the shear 
direction of the continuum across the plane continually 
changes, as can be seen by imagining a shear plane pole 
rotating across the tangent-lineation diagram in Fig. 4. 
Thus in general, the newest slickenline to develop has an 
orientation that differs from both the original and the 
rotated orientations of the initial slickenline. The only 
exceptions are for the set of local shear planes whose 
normals are perpendicular to the microspin axis. Be- 
cause new orientations of slickenline continuously de- 
velop on the local shear plane as it progressively rotates, 
a curved slickenline results. At present we consider only 
the oldest and the youngest orientations. 

Figure 5(a) is a tangent-lineation diagram for a macro- 
scopic shear angle of approximately ~p = 19 ° (cf. Fig. 3b 
where ~p = 45 °) showing the orientation pattern of the 
oldest slickenlines (small arrows) and the youngest slick- 
enlines (large arrows) for each plane in an approxi- 
mately uniform distribution of local shear plane orien- 
tations. The diagram was computed from theoretical 
equations developed by Twiss et al. (1989, and in prep- 
aration). All these planes have rotated from different 
initial orientations, at which they acquired the oldest 
slickenlines, to their final orientations, at which they 
acquired the youngest slickenlines. They have rotated 
from right to left across the diagram on small circles 
about the microspin axis, which is parallel to k2. The 
angular difference between each pair of arrows indicates 
the amount of curvature the slickenlines would show on 
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Fig. 5. After a finite increment of shear, local shear planes are rotated, and tangent-lineation diagram becomes monoclinic. 
Lineation pattern is shown after simple shearing through an angle 9' = 19" (of. Fig. 3 where 9, = 45 °) (lower-hemisphere, 
equal-angle projections). (a) Orientations for oldest rotated slickenlines are shown by short arrows, and for youngest 
slickenlines by long arrows. The unique plane of monoclinic symmetry is parallel to kt-i3 plane, and microspin axis is 
parallel to i2. (b) Constructing an arcuate arrow about the local shear plane pole from the orientation of youngest 
slickenline to oldest clearly defines symmetry of slickenline curvature. Sense of rotation about mierospin axis is same as 

sense of curvature of slickenlines about local shear plane poles that lie in same field as microspin axis. 
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a given local shear plane. That amount varies with the 
orientation of the plane and depends on the relation 
between the microspin and the macrospin as well as on 
the total amount of macrodeformation. The pattern of 
the tangent-lineation diagram is now monoclinic, with 
the symmetry plane normal to the microspin axis and to 
e2. 

The symmetry of the pattern is clearer if we replace 
each pair of arrows in Fig. 5(a) with an arcuate arrow 
about the pole to the local shear plane to show the 
curvature sense (clockwise or counterclockwise) from 
youngest to oldest slickenline orientations (Fig. 5b). This 
convention for indicating the sense of curvature defines 
the sense of rotation of the local shear plane and is 
opposite to the growth direction of the slickenline (see 
Fig. 6 and associated discussion). The curvature sense 
thus defined is different on planes whose norrnals are on 
opposite sides of the symmetry plane for the macro- 
scopic simple shear. From this pattern, therefore, we 
can immediately identify the symmetry plane, because 
that plane separates the data into fields of opposite 
curvature sense. 

DETERMINING SHEAR SENSE OF A SHEAR ZONE 

Although the analysis above is based on progressive 
simple shear, the same features would be characteristic 
of any deformation with monoclinic symmetry. Thus we 
can deduce a general technique for inferring shear sense 
from curved slickenlines. 

In the field, we measure the orientation of the local 
shear plane and, looking down on the plane, record the 
sense of curvature (clockwise or counterclockwise ) from 
the youngest to the oldest orientation of slickenline on 
that plane. We plot the shear plane pole on a spherical 
projection using a distinct symbol according to whether 
the slickenline on that plane shows clockwise or counter- 
clockwise curvature sense. (In Fig. 10 we use dots and 
plusses to indicate clockwise and counterclockwise cur- 
vature sense, respectively.) The plane that best separ- 
ates the data into two fields of opposite curvature sense 
is the symmetry plane for the macroscopic deformation 
(cf. Figs. 5b and 10). The axis of microspin is normal to 
the symmetry plane. The sense of rotation about that 
axis, looking down its plunge, is the same as the curva- 
ture sense plotted about the poles to shear planes that lie 
in the same field as the microspin axis (Fig. 5b). 

If the orientation of the fault zone is plotted as a great 
circle on the same diagram, the macroscopic slip direc- 
tion is parallel to the intersection of that great circle with 
the symmetry plane (Fig. 5; cf. Fig. 1). The rotation 
sense about the microspin axis defines the sense of shear 
in the fault zone. 

INTERPRETATION OF SLICKENFIBER GROWTH 

In order to determine the correct curvature sense for a 
curved slickenline, we must be able to distinguish the 
youngest from the oldest end of the slickenline. For 
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(a) (b) 
Fig. 6. Patterns of slickenfiber growth on a local shear plane rotating 
clockwise, assuming equal increments of growth alternating with equal 
increments of rotation. New fiber growth occurs at the point labeled 
with open circle. Each fiber is attached to opposite wall of local shear 
plane at point labeled x. Age of fiber segments decreases from A 
(oldest) to D (youngest). (a) Syntaxial fiber growth. (b) Antitaxial 

fiber growth. 

slickenfibers, we must therefore know whether the 
growth has been syntaxial or antitaxiai (Durney & 
Ramsay 1973, Ramsay 1980, Ramsay & Huber 1983). 
Fibers that grow syntaxially increase in length by growth 
at a medial surface between the fracture walls, and an 
optical discontinuity in the fibers is evident across this 
surface. The fibers have the same composition as miner- 
als in the wall rock and show optical continuity with 
those mineral grains. Fibers that grow antitaxially in- 
crease in length by growth at the interface between the 
fiber and both walls of the fracture. Small inclusions of 
wall rock material are commonly contained within the 
fibrous fracture filling and may define a distinct medial 
surface, but the fibers are optically continuous across the 
medial surface. 

Figures 6(a) & (b) show the difference in curvature of 
the fibers that would develop for these two modes of 
fiber growth. The models assume constant increments of 
growth in a constant orientation alternating with equal 
increments of rotation. Segments of growth are labeled 
in alphabetical order, so that segments labeled 'A' are 
the oldest. New growth occurs at the points labeled with 
open circles, and fibers are connected to opposite frac- 
ture walls at the two points labeled with an 'x ' .  In the 
antitaxial case, the circles and xs are superimposed 
(Fig. 6b). 

The sense of curvature from the youngest segment 
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(D) to the oldest segment (A) is the same (clockwise) in 
both cases and for both halves of the fiber, although the 
curvature of the whole fiber defines a n ' S '  in one case 
(Fig. 6a) and a 'Z'  in the other (Fig. 6b). Thus obser- 
vation of slickenfibers in the petrographic microscope 
might be necessary in order to be confident of the 
curvature sense recorded in the field. 

APPLICATION TO THE FEATHER RIVER 
PERIDOTITE 

The Feather River Peridotite is an ultramafic body in 
the northern Sierra Nevada of California. It is bounded 
on both the east and west sides by fault zones along 
which the body is completely serpentinized and exten- 
sively sheared (Fig. 7). The fault zones are part of an 
extensive system of faults commonly grouped together 
as the Foothills fault system, although different seg- 
ments of this fault system may have different tectonic 
histories and significance. Within this system, the 
Feather River Peridotite occupies the Melones fault 
zone. Like many sheared serpentinites, the rock is 
characterized by a multitude of fractures that have a 
wide range of orientations and are covered by slicken- 
fibers. Most slickenfibers are straight, although two 
intersecting sets of slickenfibers on the same surface are 
fairly common; curved slickenfibers (Fig. 8), although 
not abundant,  are common enough to provide a signifi- 
cant amount of data. Observed amounts of curvature on 
different local shear planes is highly variable, but ranges 
up to a maximum of about 90 °. Although the fibers are 
serpentine and the walls of the shear fractures are 
serpentinized, the mode of growth is antitaxial (Fig. 9). 

The tectonic significance and history of the two fault 
zones bounding the peridotite body has been the subject 
of considerable debate. Gefell (1989) made a detailed 
analysis of the shear sense indicators along the margins 
of the peridotite, both in the peridotite and in the 
adjacent rocks (Gefell et al. 1989). The curved slicken- 
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Fig. 7. Index map of California and study area within Feather River 
Peridotite. Areas from which data in Fig. 11 were obtained are 

indicated by triangles; other data localities are indicated by dots. 

fiber technique was applied to determine the sense of 
shear of a late brittle phase of deformation along the 
fault zones. 

The data from the three locations that provided well- 
defined results (Fig. 7, triangles) are shown in Fig. 10. 
One of the useful data sets is from the west side of the 
peridotite (Fig. 10a) and two are from the east side (Figs. 
10b & c). Other locations (Fig. 7, dots) yielded ambigu- 
ous or uninterpretable data, which we discuss in the next 
section. Each diagram in Fig. 10 is a plot of local shear 
plane poles, for which we have used a different symbol 
according to whether the slickenfibers on the plane show 
a curvature sense that is clockwise (dots) or counter- 
clockwise (plusses), where curvature sense is deter- 
mined from youngest to oldest orientation. Using these 
symbols allows easier visual interpretation of the dia- 
gram than the curved arrows shown in Fig. 5(b), but the 
significance is the same. 

In Fig. 10(a), we can visually locate a plane that 
provides a good separation of the data into fields of 
opposite curvature sense. The comparable plane is less 
well constrained in Fig. 10(b) and poorly constrained in 
Fig. 10(c), where one curvature sense is not well rep- 
resented. For Fig. 10(c), we chose a plane that marks a 
boundary for the majority of the data having the same 
curvature sense and that is as consistent as possible with 
the few data available of the opposite curvature sense. 

An imperfect separation of data that lie immediately 
along the plane is easily accounted for by inaccuracies of 
measurement and minor inhomogeneities in defor- 
mation. Apart from these data, each diagram contains 
one or two data points that unequivocally plot in the 
wrong field. We discuss the possible ongins of such data 
in the next section. 

We interpret the plane that separates the data into 
fields of opposite curvature sense to be the symmetry 
plane for the macroscopic deformation, and the pole to 
that plane to be the axis of microspin. The rotation sense 
about the microspin axes is clockwise (heavy dots) in 
Figs. 10(a) & (b), and counterclockwise (heavy plusses) 
in Fig. 10(c). This rotation sense is the same as the 
curvature sense about the local shear plane poles that 
plot in the same field as the microspin axis. 

The solid great circle in each diagram (Fig. 10) indi- 
cates the approximate regional orientation of the 
Melones fault zone in the area of study (cf. Fig. 7). In 
principle, the microspin axis should be parallel to the 
fault zone (Fig. 1), a relationship which holds true for 
Fig. 10(a), is close for Fig. 10(c), and is only approxi- 
mate for Fig. 10(b). The intersection of the macroscopic 
shear zone orientation with the symmetry plane defines 
the approximate direction of macroscopic slip on the 
fault zone. Thus Figs. 10(a) & (b) indicate oblique-slip 
plunging to the southeast, and Fig. 10(c) indicates essen- 
tially dip-slip. The rotation senses inferred for the mic- 
rospin axes are all consistent with dextral-normal (Figs. 
10a & b) or normal (Fig. 10c) slip. 

The ~wo data sets that best constrain the symmetry 
plane (Figs. 10a & b) give very consistent results of 
southeast dextral-normal slip on the fault zone. The 



Curved slickenfibers 

Fig. 8. Serpentine slickenfibers from Feather River Peridotite. (a) A smoothly curved s[ickenfiber lineation. (b) A sharply 
curved stickenfiber lineation. 

Fig. 9, Photomicrograph of serpentine slickenfibers in a pull-apart along a local shear plane, showing antitaxial character of 
fibers. Growth lines can be discerned at a high angle to fibers. 
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Fig. 10. Curved slickenfiber data from west and east margins of 
Feather River Peridotite (cf. Fig. 7). Data points are poles to local 
shear planes which are plotted as dots if slickenfiber curvature on the 
plane is clockwise, and as crosses if curvature is counterclockwise. 
Slickenfiber curvature is from youngest to oldest part of the fiber, 
looking down on plane. Dashed planes are inferred symmetry planes 
for macroscopic motion. Solid plane indicates approximate orien- 
tation of the Melones fault zone in this region. Inferred microspin 
axes, rotation senses, and slip directions are labeled (lower- 
hemisphere, equal-area projections). (a) Area 13:26 points. Dextral- 
normal oblique-slip• (b) Area 20:15 points. Dextral-normal oblique- 

slip. (c) Area 12:18 points. Normal clip-slip. 

third data set (Fig. 10c) provides only poor constraint of 
the symmetry plane which may account for the differ- 
ence in slip direction. Thus we infer the most probable 
geometry of faulting for the area to be dextral-normal 
slip, as shown diagrammatically in Fig. 11. On the NW- 
striking, steeply NE-dipping fault zone, the slip direc- 
tion plunges to the southeast, and the clockwise rotation 
sense on the microspin axis indicates dextral-normal 
oblique slip. 

DISCUSSION 

The symmetry of the velocity field for progressive 
simple shear is monoclinic, characterized by one mirror 
plane of symmetry normal to the shear plane and paral- 
lel to the slip direction, and one two-fold axis of ro- 
tational symmetry normal to the symmetry plane (Fig. 
1). We expect, therefore, that structures such as slicken- 
lines that record an aspect of the displacement field 
could preserve this symmetry. In nature, the local shear 
planes commonly have a preferred orientation. Thus the 
actual plots of field data are not themselves necessarily 
monoclinic (Fig. 10) because they show only a portion of 
the entire monoclinic pattern in Fig. 5(b). Nevertheless, 
because the sense of curvature of slickenlines on local 
shear planes changes across the symmetry plane, we can 
infer the orientation of this plane from a diagram that 
itself does not actually display the symmetry. 

Observations made in the field are not completely in 
accord with the predictions of the model. For example, 
straight and crossing slickenfibers are more abundant 
than curved slickenfibers. Some curved slickenfibers are 
smoothly curved (Fig. 8a), but others are sharply curved 
(Fig. 8b). Moreover, the results from the three different 
localities show quite different orientations of the sym- 
metry plane (Fig. 10), the microspin axis does not, in 
every case, lie in the fault plane, and results from some 
localities are uninterpretable. The model on which the 
analysis is based assumes that the deformation is homo- 
geneous and the motion is steady, which is certainly 
over-simplified. Deviations from these assumptions 
probably account for differences between the model and 
observation. 

Dextral Normal 

Fig. 11. Generalized geometry of dextral-normal shear inferred from 
curved serpentine sliekenfihers in Feather River Peridotite along 

Melones fault zone. 
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The abundance of straight slickenfibers that we ob- 
served may be explained in part by the fact that for a 
large range of shear plane orientations, the angle be- 
tween young and old fiber orientations is quite small 
(Fig. 5a) and might not be detectable in the field. 
Beyond that, however, the deviation can be accounted 
for by a more realistic model of the deformation. The 
deformation of a pervasively fractured body can be 
visualized as if it were a very coarsely granular material 
in which the 'grains' are the blocks of rock that are 
bounded on all sides by fractures. Deformation is 
accommodated by sliding on the fracture surfaces, or 
'grain boundaries', and this sliding is recorded by the 
slickenlines. The freedom of the blocks to rotate, how- 
ever, is restricted because they are angular and tightly 
packed. Thus we cannot expect the macroscopic defor- 
mation or the microspin to be homogeneous and steady 
on a small scale. 

For slickenlines to be curved, they must grow over a 
period of time sufficient for significant rotation of the 
local shear planes to occur. Slip on local shear planes, 
and thus growth of the slickenlines, however, does not 
have to be continuous throughout the entire defor- 
mation. Thus without free rotation, straight lineations 
could easily form. Because of the inhomogeneity, 
changes in slip direction on local shear planes may be 
discontinuous rather than gradual, resulting in crossing 
lineations and causing some lineations to be sharply 
instead of smoothly curved. 

The reliability of orientations inferred for the sym- 
metry planes, of course, depends on the quality of the 
data, and if the symmetry planes are poorly constrained, 
results from different data sets will not agree. Differ- 
ences in the orientations of symmetry planes from differ- 
ent localities may be real, however, because even on the 
macroscopic scale, we cannot realistically expect the 
deformation to be homogeneous and steady. Irregu- 
larities in the geometry of the fault zone and its bound- 
aries (Fig. 7), for example, require a change in the 
geometry of the deformation at any given material point 
as the shearing progresses. If the local orientation of 
shearing changes during the deformation, the total de- 
formation in general becomes triclinic, and the monocli- 
nic plane of symmetry is destroyed. Such deformation 
would yield uninterpretable data from curved slicken- 
lines. Thus we might expect instances in which the 
application of the curved slickenfiber technique would 
give ambiguous or uninterpretable results, as indeed we 
found in the analysis of the Feather River Peridotite. 
Plotting all the data in Fig. 10 together in a regional 
composite plot, for example, would clearly destroy any 
obvious symmetry plane. 

Smoothly curved slickenfibers imply that the history 
of fiber growth was continuous and therefore that the 
recorded deformation was a single continuous episode 
rather than the result of two or more differently oriented 
superposed deformations. The fact that the symmetry 
plane of the curved slickenfiber pattern is susceptible to 
destruction by changes in the geometry of the defor- 
mation has both positive and negative implications. On 

the negative side, it means that the technique is not very 
robust. On the positive side, it means that it is highly 
unlikely that interpretable patterns of slickenfiber cur- 
vature could result from a progressive change in the 
orientation of the principal instantaneous strain rate 
axes, because such changes, reflecting changing tectonic 
conditions, would most likely destroy the monoclinic 
symmetry. 

The clearest results should come from local areas 
where the deformation most closely approximates a 
homogeneous and steady condition, which may be areas 
in which the deformation has been relatively short-lived. 
In such areas the local geometry of the deformation 
might deviate somewhat from the average for the fault 
zone. In Fig. 10, we plot a single orientation for the fault 
zone. In fact, the actual fault contact is poorly exposed 
and the orientation of the fault in local areas is not 
closely constrained. Significant variations in trend of the 
fault are suggested by the surface trace shown in Fig. 7. 
These considerations could account for the different 
observed symmetry planes and for the cases in which the 
inferred axis of local rotation is not exactly parallel to the 
regional orientation of the fault zone (Figs. 10b & c). 

If crossing sets of slickenlines developed because of 
discontinuous shear-induced rotation or discontinuous 
local shear, they also could be used in the same manner 
as the curved slickenlines to infer shear sense in the 
shear zone. For slickenfibers, however, the interpre- 
tation is less secure because the genetic relationship 
between the young and old slickenfibers is less definite 
for crossing slickenfibers than it is for curved slicken- 
fibers. Growth of a new set of crossing fibers does not 
necessarily begin from the youngest ends of the earlier 
fibers, thereby making ambiguous any superposition 
relationship between the crossing fibers. Crossing sets of 
slickenlines could also be due to a superposition of two 
different deformations, in which case they would prob- 
ably yield uninterpretable results because it is unlikely 
that a symmetry plane would exist. Our attempts at 
interpreting crossing slickenfiber sets so far have been 
unsuccessful. 

The abundance of straight slickenlines suggests the 
possibility of interpreting the data simply in terms of an 
orthorhombic tangent-lineation diagram such as in Fig. 
4. An iterative program written by J. Angelier was used 
to calculate the orientation of the principal stress direc- 
tions from straight slickenline data, assuming the slick- 
enlines are parallel to the directions of maximum 
resolved shear stress on the local shear planes. The 
program provides unstable results and leaves as many as 
40% or 50% of the data unsatisfactorily accounted for. 
Using Angelier's program to separate the data into two 
distinct populations, for which principal stress axes are 
independently determined, also gives unstable and in- 
consistent results. 

We conclude that rotation of the local shear planes 
with their lineations has produced sufficient reorien- 
tation that the interpretation of the data in terms of one 
or two orthorhombic tensor orientations is problemati- 
cal. Thus trying to infer slip direction by inspection of a 
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tangent-lineation diagram of the data would also be 
unreliable or impossible. The curved slickenfiber tech- 
nique, however, provides a consistent means of inter- 
preting non-coaxial bulk deformations. Furthermore, it 
can be applied in the field and does not require a 
complex computer analysis of the data. 

Regional analyses of strain and stress orientations 
support our interpretation of late normal and normal- 
dextral motions along the bounding faults of the Feather 
River Peridotite. Eddington et al. (1987) have deduced 
from fault slip geometries in the northeastern Sierra 
Nevada and in northwestern Nevada that the region has 
undergone E-W extension between 107 and 104 years 
ago. This extension has imposed a normal component of 
slip on many reactivated Mesozoic-age reverse faults of 
the Foothills fault system, including the Melones fault 
zone (Ait et al. 1977). 

This process probably is ongoing. The present-clay 
least principal horizontal stress direction across the 
northern Sierra Nevada trends about 090 ° , as evidenced 
by seismic moment tensors (Eddington et al. 1987), focal 
mechanisms and borehole breakout data (Zoback & 
Zoback 1980). East-west extension should produce slip 
vectors that trend about 090 ° or 270 ° on pre-existing 
faults (Zoback & Zoback 1980), causing NW-striking 
faults to slip obliquely with normal and dextral com- 
ponents. Focal mechanisms (Wong & Savage 1983) and 
miners' observations of the fault displacement of pierc- 
ing points defined by stream channels in the northern 
Sierra Nevada (Cassaway 1899) bear out this prediction, 
and corroborate our results. 

CONCLUSION 

We conclude that our technique for analysing curved 
slickenlines that form by progressive lengthening during 
deformation can indicate the slip direction and the shear 
sense in brittle shear zones where slickenlines have a 
wide diversity of orientations that are inconsistent with 
direct inference of slip direction and shear sense. It 
therefore provides a valuable addition to the existing 
techniques for determining shear sense in shear zones. 
In the Feather River Peridotite, at least, the detailed 
analysis of local areas appears more fruitful than re- 
gional syntheses. Probably because of inhomogeneous 
and unsteady deformation, however, the solutions in 
some cases are ambiguous or uninterpretable. 

Acknowledgements--We are grateful for financial support of this 
research, which was provided in part by a grant to R. J. Twiss from the 
Committee on Research of the Academic Senate, University of 
California at Davis, and by grants in aid of research to M. J. Gefell 
from the Geological Society of America, the American Association of 
Petroleum Geologists, and the Durrell Fund awarded by the Geology 
Department, University of California at Davis. We thank G. Protz- 
man and S. Hurst for the use of their programs by which we calculated 
the diagrams in Figs. 4 and 5(a). The presentation of these ideas 
benefited greatly from the suggestions of W. D. Means and an 
unidentified reviewer. Technical support was provided by the Geology 
Department at U.C. Davis, and we thank Janice Fong for drafting the 
figures. 

REFERENCES 

Alt, J., Schwartz, D. & McCrumb, D. 1977. Earthquake Evaluation 
Studies o[ the Auburn Dam Area. 3. Regional Geology and Tecto- 
nics. Woodward-Clyde Consultants, San Francisco. 

Angelier, J. 1979. Determination of the mean principal directions 
of stresses for a given fault population. Tectonophysics 56, TI7- 
T26. 

Angelier, J. 1984. Tectonic analysis of fault slip data sets. J. geophys. 
Res. 89, 5835-5848. 

Berth~, D., Choukroune, P. & Jegouzo, P. 1979. Orthogneiss, mylo- 
nite and non-coaxial deformation of granites: the example of the 
South Armorican Shear Zone. J. Struct. Geol. I, 31-42. 

Bott, M. H. P. 1959. The mechanics of oblique slip faulting. Geol. 
Mag. 96, 109-117. 

Cassaway, A. D. 1899. The Magalia, California, drift mine. Min. Sci. 
Press 78(I 14), 372. 

Durney, D. W. & Ramsay, J. G. 1973. Incremental strains measured 
by syntectonic crystal growth. In: Gravity and Tectonics (edited by 
DeJong, K. A. & Scholten, R.). John Wiley and Sons, New York, 
67-96. 

Eddington, P. K., Smith, R. B. & Renggli, C. 1987. Kinematics of 
Basin and Range intraplate extension. In: Continental Extensional 
Tectonics (edited by Coward, M. P., Dewey, J. F. & Hancock, P. 
L.). Spec. Publs geol. Soc. Lond. 28, 371-392. 

Etchecopar, A., Vasseur, G. & Daignieres, M. 1981. An inverse 
problem in microtectonics for the determination of stress tensors 
from fault striation analysis. J. Struct. Geol. 3, 51-65. 

Gefell, M. J. 1989. Shear sense for the bounding faults of the Feather 
River Peridotite, northern Sierra Nevada, California. Unpublished 
M.S. thesis, Geology Department, University of California at 
Davis. 

Gefell, M. J., Twiss, R. J. & Moores, E. M. 1989. Ductile and brittle 
shear sense for the "Melones Fault Zone", northern Sierra Nevada, 
California. Geol. Soc. Am. Abs. w. Prog. 21, 83. 

Golds:ein, A. & Marshak, S. 1988. Analysis of fracture array geom- 
etry. In: Basic Methods of Structural Geology (written and edited by 
Marshak, S. & Mitra, G.). Prentice-Hall, Englewood Cliffs, New 
Jersey, 249-267. 

Hancock, P. L. 1985. Brittle microtectonics: principles and practice. J. 
Struct. Geol. 7,437-457. 

Hansen, E. C. 1971. Strain Facies. Springer, New York. 
Hoeppener, R. 1955. Tektonik im schiefergebirge eine einfuhrung. 

Geol. Rdsch. 44, 26-58. 
Lister, G. S. & Snoke, A. W. 1984. S-C mylonites. J. Struct. Geol. 6, 

617-638. 
Marshak, S., Geiser, P. A., AIvarez, W. & Engelder, T. 1982. 

Mesoscopic fault array of the northern Umbrian Apennine fold belt, 
Italy: geometry of conjugate shear by pressure-solution slip. Bull. 
geol. Soc. Am. 93, 1013-1022. 

Means, W. 1987. A newly recognized type of slickenside striation. J. 
Struct. Geol. 9,585-590. 

Passchier, C. W. & Simpson, C. 1986. Porphyroclast systems as 
kinematic indicators. J. Struct. Geol. 8, 831-843. 

Petit, J.-P. 1987. Criteria for the sense of movement on fault surfaces 
in brittle rocks. J. Struct. Geol. 9, 597--608. 

Platt, J. P. & Vissers. R. L. M. 1980. Extensional structures in 
anisotropic rocks. J. Struct. Geol. 2,397-410. 

Ramsay, J. 1980. The crack-seal mechanism of rock deformation. 
Nature 284, 135-139. 

Ramsay, J. & Huber, M. 1983. The Techniques of Modern Struc- 
tural Analysis, Volume I: Strain Analysis. Academic Press, New 
York. 

Simpson, C. & Schmid, S. 1983. An evaluation of the criteria to 
deduce the sense of movement in sheared rocks. Bull. geol. Soc. 
Am. 94, 1281-1288. 

Twiss, R. J., Protzman, G. M. & Hurst, S. D. 1989. Interpretation of 
slickenside lineation patterns in terms of the velocity gradient tensor 
and finite deformation. Geol. Soc. Am. 1989 Annual Meeting Abs. 
w. Prog. 21, A265. 

Willis, D. G. 1977. Kinematic model of preferred orientation. Bull. 
geol. Soc. Am. 88,883-894. 

Wong, I. & Savage, W. 1983. Deep intraplate seismicity in the western 
Sierra Nevada, central California. Bull. seism. Soc. Am. 12, 391- 
394. 

Zoback, M. L. & Zoback, M. 1980. State of stress in the conterminous 
United States. J. geophys. Res. 85, 6113-6156. 


